國立臺北科技大學九十九學年度碩士班招生考試

系所組別:3301、3302材料科學與工程研究所

第一節 普通熱力學 試題

第一頁 共二頁

9941414001

注意事項:

- 1. 本試題共14題,配分共100分。
- 2. 請標明大題、子題編號作答,不必抄題
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。

<u>Section A.</u> Chose "one" correct answers for each of the followings. [5%] for each one, total 40% [

2. Figure 1 shows idealized reversible cycles of the _____ engine. (a)diesel, (b)Otto, (c)Carnot, (d)turbo

Figure 1.

- 4. 30 mTorr = Pa (a)1, (b)2, (c)3, (d)4
- 5. Apparatus shows in figure 2 is a constant pressure calorimeter which suitable for measuring the ______ of a salt in a solution.
 (a)work, (b)enthalpy, (c) melting point, (d) formation energy

Figure 2

6. Clausius inequality state:
 ds ____ dq/T
 (a)<, (b)>, (c)≤, (d)≡

第二頁 共二頁

- 7. The First law of thermodynamic state:
 - (a)It is impossible for a system to undergoes a cyclic process whose sole effects are the flow of heat into the system from a heat reservoir and the performance of an equivalent amount of work by the system on the surroundings.
 - (b) The entropy of a pure, perfectly crystalline substance (element of compound) is zero at zero Kelvin.
 - (c)It is impossible for a system to undergoes a cyclic process whose sole effects are the flow of heat into the system from a cold reservoir and the performance of an equivalent amount of heat out of the system into a hot reservoir.
 - (d)The internal energy of an isolated system is constant.
- 8. A mixture of oxygen and hydrogen is analyzed by passing it over hot copper oxide. Hydrogen reduces the CuO according to the reaction CuO + $H_2 \rightarrow Cu + H_2O$ and oxygen reoxidizes the copper formed according to $Cu + 1/2 O_2 \rightarrow CuO$. At 25°C and 750 Torr, 100.0 cm³ of the mixture yields 55 cm³ of dry oxygen measured at 25°C and 750 Torr after passage over CuO.

What is the original composition of the mixture?

O₂:H₂=(a)50:50(b)70:30(c)80:20(d)90:10

Section B. Calculations

[10% for each one, total 60%]

- A petroleum factory using a gas tank to storing ethane gas. The pressure in the tank is 20 MPa, 25°C, and the tank capacity is 800 m³.
 - Calculate how many moles of ethane are stored in the tank and show the density of ethane gas. (assume C_2H_6 obey ideal gas behavior)
- 10.A balloon, its empty weight is 100 g. Using He gas to fill it, finally filled as 1 m^3 , $1.5 \times 10^5 \text{ Pa}$, at room temperature. When you release it in atmosphere. Is it rise? Calculate to show the reason.
- 11.A refrigerator is operated by a 0.5-hp (1 hp = 746 watts) motor. If the interior is to be maintained at -23°C and the room temperature is 27°C, the coefficient of performance is 60% of the maximum theoretical value, what is the maximum heat leak that can be tolerated?

12. Use the values in table to calculate $\Delta H_{reaction}^{\circ}$ and $\Delta U_{reaction}^{\circ}$ at 298.15 K for the following reactions:

$$2NO_2(g) \rightarrow 2NO(g) + O_2(g)$$

- 13.The temperature of 1 mol of an ideal gas increases from 20.0 °C to 60.0 °C as the gas is compressed adiabatically. Calculate heat(q), work(w), internal energy(ΔU) and enthalpy(ΔH) for this process assuming that $C_{Vm} = 3/2R$.
- 14. The following thermodynamic data apply to the complete oxidation of butane at 25°C: $CH_3OH(g) + 3/2O_2(g) \rightarrow 1CO_2(g) + 2H_2O(l)$

$$\Delta H^{0} = -891kImol^{-1}$$
$$\Delta S^{0} = -186.3JK^{-1}mol^{-1}$$

Suppose that a completely efficient fuel cell could be set up utilizing this reaction. Calculate (a) the maximum electrical work and (b) the maximum total work that be obtained at $25\,^{\circ}\mathrm{C}$

Appendix

Table 1. symbol

q	Heat	G	Gibbs energy	
w	Work	T	Temperature	
U	Internal energy	V	Volume	
Н	Enthalpy	P	Pressure	
S	Entropy	С	Heat capacity	- ik's

Table 2. Thermodynamic data.

	ΔH^0_{f}	$\Delta G^0_{\ f}$	S ⁰	$C_{p,m}^0$	Molecular
	(kJmol ⁻¹)	(kJmol ⁻¹)	(JK ⁻¹ mol ⁻¹)	(JK ⁻¹ mol ⁻¹)	weight
N(g)	472.7	455.5	153.3	20.8	14.007
NH ₃ (g)	-45.9	-16.5	192.8	35.1	17.03
NO(g)	91.3	87.6	210.8	29.9	30.01
N ₂ O(g)	81.6	103.7	220.0	38.6	44.01
NO ₂ (g)	33.2	51.3	240.1	37.2	46.01

Molar gas constant = $8.314 \text{ JK}^{-1}\text{mol}^{-1}$