

系所組別:4112工業工程與管理系碩士班甲組

第二節 作業研究(選考)試題

第一頁 共二百

注意事項:

- 1. 本試題共四題,配分共100分
- 2. 請標明大題、子題編號作答,不必抄題。
- 3 全部答案均須在答案卷之答案欄內作答,型式如 4. 說明,否則不予計分。
- 4. 請自行在答案卷首頁依序標註題號並畫出題目下方填答的表格(Answers of ...),然後將答案填入。答案卷第二頁之後必須有所有答案的計算過程與推導。
- 1. Given the following LP problem:

Max
$$Z = [3 \ 2 \ 3] X$$

$$\begin{bmatrix} -2 & -1 & -1 \\ 3 & 4 & 2 \end{bmatrix} X \ge \begin{bmatrix} -2 \\ 8 \end{bmatrix}, X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \ge 0$$

(1) Please apply Two-Phase method to find the optimal solution if it exists. If there is no optimal solution, please explain your opinions.

	Allowers of 1-(1).				
Optimum Z*	Basic variable_1	Basic variable_2			
4_points	4_points	4_points			

- (2) Use the information in (1) to identify the range for c_1 and c_2 (the first and second coefficients in the objective function) respectively such that the optimal basis still remains the same.
- (3) Show your calculation to give the value of $\partial Z/\partial x_I$ in the final iteration.
- (4) Please identify the pivot number (element) in the last iteration and explain why.
- (5) Please identify the new optimum Z^* if the right hand side is changed to $[-3, 7]^T$. DO NOT solve it from the beginning.

	Answers of	1-(2)~(3).		
1-(2) Range of c ₁	1-(2) Range of c ₂	$ \begin{array}{c} 1-(3) \\ \partial Z/\partial x_1 \end{array} $	1-(4) pivot number	1-(5) new optimum Z*
2_points	2_points	2_points	2_points	5_points

2. Consider the three-period inventory problem. At the beginning of each period, a firm must determine how many units should be produced during the current period. During a period, if x units are produced, a production $\cot c(x)$ is incurred, where C(0) = 0, and for x > 0, c(x) = 3 + 2x. Production capacity during each period is limited to 4 units. The demand is random and observed after production occurs. Each period's demand is equally likely to be 1 or 2 units. After meeting the current period's demand out of current production and inventory, the firm's end-of-period inventory is evaluated, and a holding cost of \$1 per unit is assessed. Because of limited space capacity, the inventory at the end of each period cannot exceed 3 units. It is required that all demand be met on time. Any inventory on hand at the end of period 3 can be sold at \$2 per unit. At the beginning of period 1, the firm has 1 unit of inventory. Please apply dynamic programming to determine a production policy that minimizes the expected net total cost incurred during the three periods.

Answers of 2:

Amount produced in period 1	Amount produced in period 2	Total cost
8_points	8_points	8_points

3. Consider the transportation problem having the following cost parameter table

	City1	City2	City3	SUPPLY
Plant1	5	9	10	24
Plant2	11	6	8	19
Plant3	12	13	7	17
DEMAND	21	10	19	

- (1). use Vogel's approximation method to find a basic feasible solution and its total cost.
- (2). find the optimal solution and its total cost.
- (3). consider the following demands of each city and formulate its Simplex tableau. DO NOT solve it.

	City1	City2	City3
Minimum demand	21	10	19
Maximum demand	28	13	∞

Answer of 3

3-(1)-a:	3-(1)-b:	3-(2)-a:	3-(2)-b:	3-(3)
VAM BFS	Total cost	optimal solution	total cost	Simplex tableau
In tabular format		In tabular format		In tabular format
10_po	ints	10_points		6_points

Note: 其中 3-(1)-a、3-(2)-a、3-(3) 需另外畫出最後答案的表格,不需在上列表格內作答。

注意:背面尚有試題

第二頁 共二頁

- (1). In a Markov chain, given two states i and j, a path from i and j is a sequence of transitions that begins in i and ends in j, such that each transition in the sequence has a positive probability of occurring. A state is **reachable** from state i if there is a path leading from i to j. Two states i and j are said to $\underline{4-(1)-a}$ if j is reachable from i, and i is reachable from j. A set of states S in a Markov chain is a $\underline{4-(1)-b}$ set if no state outside of S is reachable from any state in S. A state i is a $\underline{4-(1)-c}$ state if there exists a state that is reachable from i, but the state i is not reachable from state j. A state i is $\underline{4-(1)-d}$ with period k>1 if k is the smallest number such that all paths leading from state i back to state i have a length that is a multiple of i. If all states in a chain are recurrent, aperiodic and communicate with each other, the chain is said to be $\underline{4-(1)-e}$. ($\underline{4-(2)-e}$ $\underline{4-(2)-e}$
- (2). You are selling ice cream. Suppose that the sales of ice cream are related to the weather. Your will have a daily net loss of \$500 if it is a raining day. If not, your will have a daily net earning of \$500. During this season, the probability of a raining day is 1/3. At the beginning of April 1st, you have \$1000 capital. Your goal is to increase your capital to \$1500. As soon as you do, you stop selling. You also stop selling if your capital is reduced to \$0. What is the probability of your capital to be \$0, \$500, \$1000, and \$1500 at the end of April 4th? (8_points)
- (3). Consider the following transition matrix:

$$\begin{array}{ccccc}
0 & 1 & 2 \\
0 & 0.3 & 0.2 & 0.5 \\
P = 1 & 0.4 & 0.2 & 0.4 \\
2 & 0.3 & 0 & 0.7
\end{array}$$

4.

- (a) compute the steady-state probabilities of the Markov chain (6_points)
- (b) compute the expected(or mean) recurrence time for each state (6_points)

Answers of 4-(1)

	()			
4-(1)-a	4-(1)-b	<u>4-(1)-c</u>	<u>4-(1)-d</u>	<u>4-(1)-e</u>
1_point	1_point	1_point	1_point	1_point

Answers of 4-(2)

1 1110 11 015 01 1 (2)			
Probability of \$0	Probability of \$500	Probability of \$1000	Probability of \$1500
2_points	2_points	2_points	2_points

Answers of 4-(3)-a

Answers of 4-(3)-b

	Answers of 4-(3)-a			1 1110 11 20 0 1 1 ()			
	Steady-State	Steady-State	Steady-State	Expected	Expected	Expected	
	Probability of	Probability of	Probability of	recurrence	recurrence	recurrence	
-	state 0	state 1	state 2	time of state 0	time of state 1	time of state 2	
	2_points	2_points	2_points	2_points	2_points	2_points	