國立臺北科技大學產業研發碩士專班96年度秋季班招生考試

系所組別:150 金屬材料產業研發碩士專班

第一節 普通熱力學 試題

第一頁 共二頁

注意事項:

1.本試題共 A、B 雨大題,配分共 100 分。

- 2.請標明大題、子題編號作答,不必抄題。
- 3.全部答案均須在答案卷之答案欄內作答,否則不予計分。

Section A. Choose "one" answer for each of the following questions. [40%,每小題 4%]

- A1. Which of the following equations is true for an ideal gas under the process of isothermal reversible expansion?
 - (a) $\Delta G=0$; (b) $\Delta H=0$; (c) $\Delta S=0$; (d) None of the above.
- A2. Which of the following equations is true for a nonideal gas under the process of adiabatic reversible expansion?
 - (a) $\Delta G=0$; (b) $\Delta H=0$; (c) $\Delta S=0$; (d) None of the above.
- A3. Which of the following statements is NOT true?
 - (a) Thermodynamics is based on empirical laws.
 - (b) Reversible processes do not occur in the real world.
 - (c) Thermodynamics is a general microscopic theory of the behavior of matter.
 - (d) There is always an entropy increase on melting process.
- A4. Which of the following processes has no heat exchange between the system and the surroundings?
 - (a) adiabatic; (b) isothermal; (c) isobaric; (d) isomeric.
- A5. Which one is true for the reaction "H2O (liquid) = H2O (gas)" at 100 °C and 1 atm?

(a) $\Delta H = \Delta G$; (b) $\Delta H = 0$; (c) $\Delta S = 0$; (d) $\Delta H = T\Delta S$; (e) $\Delta S < 0$.

A6. In a closed system, which of the following equations is NOT true?

(a)
$$dw = -P_{int}dv$$
; (b) $dq_p = C_p dT$; (c) $C_v = (\partial U/\partial T)_v$; (d) $\Delta H = q_p$.

A7. If an ideal gas is expanded at constant temperature, which of the followings is true?

(a)
$$\Delta U=0$$
 and $\Delta S=0$; (b) $\Delta U>0$ and $\Delta S=0$; (c) $\Delta U=0$ and $\Delta S>0$; (d) $\Delta U>0$ and $\Delta S>0$.

- A8. In order to make the statement of " $\Delta G < \theta$ for a spontaneous process" to be true, which of the following conditions must be applied?
 - (a) An ideal gas.
 - (b) A reversible process.
 - (c) Isothermal process occurring at constant pressure.
 - (d) Isothermal process occurring at constant volume.
- A9. Which of the following quantities is zero for all substances when the temperature goes to absolute zero?
 - (a) C₁; (b) Electric resistance; (c) free energy; (d) sound velocity.

A10. By third law, the entropy of a solid at 1 atm pressure and temperature T is:

(a)
$$\Delta H/T$$
; (b) $\int_0^T dq/T$; (c) $\int_0^T C_p dT$; (d) $\int_0^T C_p dT/T$.

Section B. Choose "one" correct answer for each of the followings. 【60%,每小題 6%】

B1. Initially 2 mol of an ideal gas, with $C_{V,m} = 12.5 \text{ J K}^{-1} \text{ mol}^{-1}$, are at a volume of 5 dm³ and a temperature of 300 K. If the gas is heated to 600 K and the volume changed to 20 dm³, what is the entropy change?

(a) 11 J K^{-1} ; (b) 17 J K^{-1} ; (c) 23 J K^{-1} ; (d) 34 J K^{-1} ; (e) 40 J K^{-1} ; (f) 45 J K^{-1} .

注意:背面尚有試題

第二頁 共二頁

B2. What is the efficiency of a Carnot heat engine that represents a steam engine with its boiler at 500 K and its exhaust at 373 K?

(a) 0.746; (b) 0.573; (c) 0.254; (d) 0.797; (e) None of the above.

B3. A cooling system is designed to maintain a refrigerator at -5 °C in a room at 25 °C. If 10^4 J of heat leaks into the refrigerator each minute, and the system works at 40 % of its maximum thermodynamic efficiency, what is the power requirement in watts? (1 watt = 1 J s⁻¹)

(a) 7.5 W; (b) 47 W; (c) 448 W; (d) 1119 W; (e) 1798 W; (f) 2798 W.

B4. One mole of supercooled water at -10 °C and 1 atm pressure turns into ice. What is the entropy change in the system? (Take the heat capacities (C_{P,m}) of water and ice to be constant at 75.3 and 37.7 J K⁻¹ mol⁻¹, respectively, and the latent heat of fusion of ice is 6020 J mol⁻¹)

(a) $-22.0 \text{ J K}^{-1} \text{ mol}^{-1}$; (b) $-20.6 \text{ J K}^{-1} \text{ mol}^{-1}$; (c) $-1.4 \text{ J K}^{-1} \text{ mol}^{-1}$; (d) $2.8 \text{ J K}^{-1} \text{ mol}^{-1}$; (e) $21.4 \text{ J K}^{-1} \text{ mol}^{-1}$.

B5. According to the above question (B4), what is the entropy change in the surroundings?

(a) $-22.0 \text{ J K}^{-1} \text{ mol}^{-1}$; (b) $-20.6 \text{ J K}^{-1} \text{ mol}^{-1}$; (c) $-1.4 \text{ J K}^{-1} \text{ mol}^{-1}$; (d) $2.8 \text{ J K}^{-1} \text{ mol}^{-1}$; (e) $21.4 \text{ J K}^{-1} \text{ mol}^{-1}$.

B6. The solubility of silver chloride in pure water at 25° C is 1.3×10^{-5} mol dm⁻³. Calculate the solubility product for the process: $AgCl(s) = Ag^{+}(aq) + Cl^{-}(aq)$

(a) 1.3×10^{-5} mol dm⁻³; (b) 1.7×10^{-5} mol dm⁻³; (c) 1.7×10^{-10} mol dm⁻³; (d) None of the above.

B7. According to the above question (B6), calculate the ΔG° for the process.

(a) 0 kJ mol^{-1} ; (b) $4.2 \times 10^{-7} \text{ kJ mol}^{-1}$; (c) 55.8 kJ mol^{-1} ; (d) 0.55 kJ mol^{-1} .

B8. At 25°C the equilibrium constant for the reaction $CO(g) + H_2O(g) = CO_2(g) + H_2(g)$ is 1.0×10^{-5} , and ΔS^o is 42 J K⁻¹ mol⁻¹. Calculate ΔG^o at 25°C.

(a) 0 J mol⁻¹; (b) -282 J mol⁻¹; (c) -28538 J mol⁻¹; (d) 282 J mol⁻¹; (e) 28538 J mol⁻¹.

B9. According to the above question (B8), calculate the ΔH° at 25°C.

T - = !

- (a) 12522 J mol⁻¹; (b) -12240 J mol⁻¹; (c) -16016 J mol⁻¹; (d) 12804 J mol⁻¹; (e) 41061 J mol⁻¹.
- B10. Calculate the equilibrium constant at 400 K for the reaction $3O_2(g) = 2O_3(g)$ where $\Delta_f G^0(O_3, g) = 163.2 \text{ kJ mol}^{-1}$.

(a) 0; (b) 0.95; (c) 4.87×10^{-22} ; (d) 2.37×10^{-43} ; (e) None of the above.