國立臺北科技大學九十五學年度碩士班招生考試

系所組別:1630 電機工程系碩士班丙組

第一節 控制系統 試題

填	准	考	證	號	碼	
1	1		L		- 1	

第一頁 共一頁

- 注意事項:
 1. 本試題共 5 題,配分共 100 分。
 2. 請標明大題、子題編號作答,不必抄題。
 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. Consider the electrical network shown in Figure 1.
 - (a) By use of nodal analysis, derive the differential equations modeling the dynamics of this network. (5%)
 - (b) Define the state of the system as $x = \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$ and the input of the system as $u = e_0$.

Find the state equations of the network. (5%)

(c) Under what condition does the system become uncontrollable? (5%)

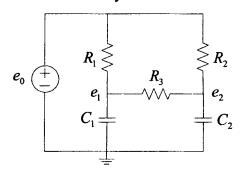


Figure 1. Linear time-invariant network

2. Consider the following transfer function

$$\frac{Y(s)}{U(s)} = \frac{s^3 + 6s^2 + (p+q)s + 3}{s^3 + 5s^2 + qs + 2}$$

(a) Draw the block diagram for the system in three-dimensional observer canonical form and determine F, G, H, and J. (10%)

$$\begin{cases} \dot{x} = Fx + Gu \\ y = Hx + Ju \end{cases}$$

(b) For what values of p and q does the transfer function have a one-dimensional, controllable and observable realization? Justify your answer. (5%)

3. Consider the cascade compensated system in Figure 2.

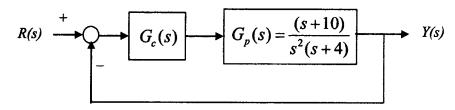


Figure 2. Cascade compensated system

- (a) Design a compensator G_c so that the closed-loop system is a third-order system with one closed-loop pole at -50 and the other two closed-loop poles 0.7 damped with an undamped natural frequency of 3 rad/s. In addition, there is a closed-loop zero at -10, and there should be zero steady state error for a unit step input. (10%)
- (b) Introduce a gain K for $G_c(s)G_p(s)$, and sketch the root locus for variable K, locating the desired closed-loop poles for K = 1. (15%)
- 4. Consider the control system shown in Figure 3.
 - (a) Draw the Nyquist plot for the open-loop transfer function. (15%)
 - (b) Determine the values of positive a and b, if any, for which the closed-loop system is stable using only the Nyquist stability criterion. (10%)
 - (c) Repeat question 4(b) using Routh-Hurwitz criterion. (5%)

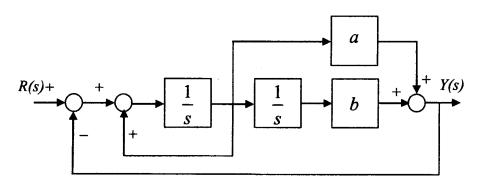


Figure 3. A feedback control system

- 5. u(kT) and y(kT) are the input and the output signals from a sampled-data system respectively. G(s) is the transfer function of the system that is being sampled.
 - (a) Derive the discrete transfer function from u(kT) to y(kT). Note that this sampled-data system is with ZOH and sampling period T and the z-transform is denoted by $Z\{\cdot\}$. (10%)
 - (b) Compute the discrete transfer function for the case when $G(s) = \frac{2}{s+2}$ and T = 1. (5%)