
國立臺北科技大學

九十四學年度電腦與通訊研究所入學考試

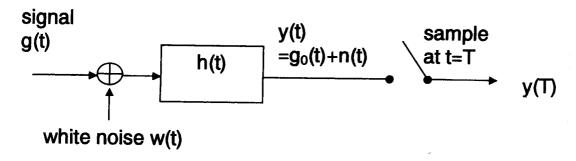
通訊系統試題

填准考證號碼

第一頁 共一頁

注意事項

- 1. 本試題共5題,配分共100分。
- 2. 請按順序標明題號作答,不必抄題。
- 3. 全部答案均須答在答案卷之答案欄內,否則不予計分。
- 1. (20%) Define (a) white random process (b) Gaussian random process
- 2. (20%) Consider a bandpass signal x(t) whose Fourier transform is given by


 $X(f)=(1+2j) \delta (f-300000)+(5+6j) \delta (f-320000)$

+ $(1-2j) \delta$ (f+300000)+(5-6j) δ (f+320000),

where δ is the delta function.

- (a) Compute the complex envelope $\tilde{x}(t)$ of x(t)
- (b) Compute the Nyquist rates of $\tilde{x}(t)$ and x(t), respectively

3. (20%) Prove that the matched filter h(t)=kg(T-t) matched to the signal g(t), where k is an arbitrary constant, maximizes the peak pulse signal-to-noise ratio $\eta = \frac{|g_0(T)|^2}{E[n^2(t)]}$. Hint: Using Schwarz's inequality.

- 4. (20%) Assume s_i , i=1,2..., M, is the transmitted M-ary signal, n is the additive noise, r is the received signal and $r=s_i+n$. Define and compare (a) <u>maximum a posteriori probability</u> (MAP) rule for coherent detection of signals in additive noise and (b) <u>maximum likelihood</u> (ML) rule for coherent detection of signals in additive noise.
- 5. (20%) Assume coherent detection, every symbol has the same energy E and the same interval T, the carrier frequency is f_c , and the additive white Gaussian noise (AWGN) has two-sided power spectral density $N_0/2$.
- (a)Draw the signal space diagram for coherent quadriphase-shift-keying (QPSK) system and define the QPSK transmitted signals $s_i(t)$, i=1,2,3,4.
- (b) Compute the union bound on the symbol error probability for QPSK. The error probabilities must be expressed in terms of Q function, where

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} exp(-\frac{v^2}{2}) dv$$