國立臺北科技大學

九十四學年度冷凍空調工程系碩士班入學考試

流體力學試題

填准考證號碼

第一頁 共二頁

注意事項:

- 本試題共四題,配分共100分。
- 請按順序標明題號作答,不必抄題。
- 全部答案均須答在答案卷之答案欄內,否則不予計分。
- 1. A steady laminar flow in a pipe with radius r_0 is shown in Fig. 1. The entrance flow is uniform, $u=U_0$, and the flow downstream is parabolic in profile, $u(r)=C(r_0^2-r^2)$. Assume the pressure distribution at location 0 is P_0 and at location x is P_x . P_0 and P_x are constant. Please determine
 - (10%)(a) the value of C.
 - (b) the viscous drag force exerted on the pipe walls between 0 and x. (15%)

Fig. 1

2. As shown in Fig. 2, a tornado may be simulated as a Rankine vortex which has a two-port circulating flow in plane polar coordinates (r, θ, z) with $u_{\theta} = U$ at r = R and $u_{r} = 0$.

For a Rankine vortex, the velocity distribution is given by

$$u_{\theta} = \frac{U}{R}r$$
, $u_{r} = 0$ if $r \le R$
 $u_{\theta} = \frac{C}{r}$, $u_{r} = 0$ if $r > R$

where C is a constant. Please determine

(a) constant C. (2%)

(b) an expression of stream function φ for a Rankine vortex. (15%)

(c) Is the flow irrotational or rotational in the region $r \le R$? (4%)

(d) Is the flow irrotational or rotational in the region r > R? (4%)

The relationship between velocity components and stream function is expressed by

$$u_{\theta} = -\frac{\partial \varphi}{\partial r}$$
, $u_{r} = \frac{1}{r} \frac{\partial \varphi}{\partial \theta}$. The vorticity component about the z-axis is $\omega_{z} = \frac{1}{r} \frac{\partial}{\partial r} (r u_{\theta}) - \frac{1}{r} \frac{\partial u_{r}}{\partial \theta}$.

Fig. 2

3. Consider the laminar flow of a fluid layer falling down a plane inclined at an angle α with the horizontal, as depicted in Fig. 3. Assume air resistance is negligible at the free surface. If h is the thickness of the layer in the fully developed stage, please

(a) determine the velocity distribution. (12%)

(b) find the volume flow rate per unit width. (5%)

(c) find the frictional stress on the wall. (5%)

(d) plot the distribution of shear stress between the bottom wall and free surface. (3%)

Fig. 3

4. Consider a two-dimensional laminar boundary-layer flow over a flat plate. Assume that the velocity profile is given by

$$\frac{u}{U} = a + by + cy^2$$

where U is the free stream velocity.

(a) Determine the constants a, b and c.

(10%)

(b) Show that $\frac{\delta}{x} = \sqrt{\frac{30}{\text{Re}_x}}$, where δ is the boundary-layer thickness and $\text{Re}_x = \frac{Ux}{v}$. (15%)