國立臺北科技大學

九十二學年度機電科技研究所博士班入學考試

工程數學(車輛組)試題

填	准	考	證	號	碼
---	---	---	---	---	---

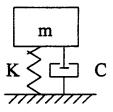
第一頁 共一頁

注意事項

- 1. 本試題共 3 題,配分共 100 分,第一題 30 分,第二題 30 分,第三題 40 分。
- 2. 請按順序標明題號作答,不必抄題。
- 3. 全部答案均須答在答案卷之答案欄內,否則不予計分。
- 1. A 0.5 kg mass (4.905 kg weight) is suspended from a spring, stretching it 0.22295 m. Then the entire system (weight and spring) is submerged in a fluid that imposes a drag force (N) of 2v (v is velocity of the weight), and the system rests in the fluid. The mass is then pulled down $\frac{2}{26}$ m and released. At the same time, the entire system is subjected to an external force $4\cos(2t)$. If buoyancy is neglected, describe displacement of the mass as a function of time.
- 2. Consider a system

$$x_1 = x_1 - x_2 + 4x_3$$

$$\dot{x}_2 = 3x_1 + 2x_2 - x_3$$


$$\dot{x}_3 = 2x_1 + x_2 - x_3$$

Such system can be represented by a state space form as $\dot{X} = AX$.

- (a) For convenience of designing a controller, this system must be converted into an uncoupled system $\hat{X} = \hat{A}\hat{X}$. Show the detailed steps of finding such an uncoupled system. Also find the new converted state variable \hat{X} .
- (b) find A^{11}

3. A simple suspension system has parameters m=1, k=6, and c=5. This suspension system

is subjected to an external force
$$f(t) = \begin{cases} t^2 & 0 \le t < 1 \\ 1 & 1 \le t < 4 \\ 0 & 4 \le t \end{cases}$$

- (a) find Laplace transform of this external force;
- (b) write the Fourier cosine series of this function for the interval $0 \le t < 4$.
- (c) what values will this Fourier cosine series converge to in those periods?

$$\left(\int x^n \cos ax dx = \frac{x^n}{a} \sin ax - \frac{n}{a} \int x^{n-1} \sin ax dx, \int x^n \sin ax dx = -\frac{x^n}{a} \cos ax + \frac{n}{a} \int x^{n-1} \cos ax dx\right)$$