國立臺北科技大學 101 學年度碩士班招生考試 系所組別:1111、1132 機電整合研究所甲、丙組 第二節 電子學 試題(選考)

第一頁 共三頁

注意事項:

- 1. 本試題共 9 題,配分共 100 分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. Describe the output wave form for the diode limiter as the following **Figure (1)**. (9%)

Fig. 1

- 2. Please answer the following questions as shown in the **Figure (2)**. (15%)
 - (a) What is $V_{CE} = ?$ when $V_{ID} = 0 \text{ V}$
 - (b) What minimum value of I_B is required to saturate this transistor if β_{DC} is 200 Neglect $V_{CE(sat)}$
 - (c) Calculate the maximum value of R_B when $V_{IN}=5$ V.

3. The LED in the **Figure 3** requires 30mA, determine the amplitude of the squire wave input voltage necessary to make sure that the transistor saturates. (if $V_{CE(sat)} = 0.3 \text{ V}$, $\beta_{DC} = 50$, $V_{LED} = 1.6 \text{ V}$) (10%)

Fig. 3

4. Determine V_{EC} and I_C for the PNP transistor circuit in the **Figure 4** (10%)

注意:背面尚有試題

第二頁 共三頁

Fig. 4

- 5. Considering Op-AMPs with negative feedback, Please answer the following questions (Aol: Gain of open-loop OP, Aol is typically large,) (10%)
 - (a) As shown in figure 5 (a), determine the Vo=?
 - (b) As shown in figure 5(b), determine the Vo=?

6. Derive the Vo as a function V₁and V₂ in the following **Figure 6**. (Assume that the gain Aol of OP open-loop is typically large) (10%)

7. The input signal in **Fig. 7 (a)** is applied to the comparator in the figure 7(b), Please drawing the output showing its proper relationship to the input signal. Assume the maximum output levels of the comparator are ±14V (10%)

- 8. For the circuit in **Figure 8**
- (16%)
- (a) Find the mathematical expression for the transient behavior of the voltage Vc and the current ic if the capacitor initially uncharged and switch is thrown into position 1 at t=0 ms
- (b) Find the mathematical expression for the transient behavior of the voltage Vc and the current ic if the capacitor initially uncharged and switch is thrown into position 2 at t=10 ms (Assume that there is no leakage current of capacitor)
- (c) Find the mathematical expression for the transient behavior of the voltage Vc and the current ic if the capacitor initially uncharged and switch is thrown into position 3 at t=20 ms
- (d) Plot the waveforms obtained in the part (a)~(c) on the same time axis using the defined polarities in figure 8.

Fig. 8

- 9. Determine the following for the fixed-bias configuration of Figure 9. (10%)
- (a) I_B and I_C
- (b) V_{CE}
- (c) V_B and V_C

Fig. 9

-		

- ϕ_{c}