國立臺北科技大學 100 學年度研究所碩士在職專班入學考試

電腦與通訊研究所

丙組:電磁學試題

填	准	考	證	號	碼

第一頁 共一頁

注意事項:

- 1. 本試題共【七】題,配分共100分。
- 2. 請按順序標明題號作答,不必抄題。
- 3. 全部答案均須答在試卷答案欄內,否則不予計分。
- 1. A coaxial transmission line consists of an inner conductor of radius a and an outer conductor whose inner radius is b. The space between the two conductors is filled with a dielectric material characterized by permittivity ε, permeability μ, and conductivity σ. Determine the line capacitance (capacitance per unit length), line inductance, and line conductance of the transmission line. (15%)
- 2. Consider a lossy coaxial transmission line with both conductor loss and dielectric loss.
 - Develop the equivalent circuit of a differential length Δz of the lossy transmission line. (4%)
 - Use this equivalent circuit to derive the time-harmonic transmission-line equations for the phasors V(z), voltage distribution along the line, and I(z), current distribution along the line. (8%)
 - Then, use the equations to solve the two phasors V(z) and I(z). (6%)
- 3. Draw the variations of a standing wave and a traveling wave in time domain. (10%)
- 4. What are a *TEM* wave, a TE wave, anα a ΓM wave? (10%)

- 5. Determine the polarizations of the following uniform plane waves: (15%)
 - $\mathbf{E} = 1\cos(\omega t + \beta z)\hat{x} + 1\sin(\omega t + \beta z)\hat{y}$,
 - $\mathbf{E} = 1\sin(\omega t + \beta z)\hat{x} + 1\sin(\omega t + \beta z)\hat{y}$
 - $\mathbf{E} = 1\cos(\omega t \beta z)\hat{x} 1\sin(\omega t \beta z)\hat{y}$,
 - $E = 1\cos(\omega t \beta z)\hat{x} 1\cos(\omega t \beta z)\hat{y}$,
 - $\mathbf{E} = 1\cos(\omega t + \beta z)\hat{x} 2\sin(\omega t + \beta z 45^{\circ})\hat{y}$
- 6. Derive the non-homogeneous wave equations for vector potential **A** and scalar potential *V* in a homogeneous medium. (20%)
- 7. A positive point charge Q is located at distance d₁ and d₂, respectively, from two grounded perpendicular conducting half-planes, as shown in Figure 1. Use the *method* of images to determine the force on Q caused by the charges induced on the planes.

 (12%)

Figure 1.