國立臺北科技大學 102 學年度碩士班招生考試

系所組別:2403 光電工程系碩士班

第三節 近代物理 試題 (選考)

第一頁,共一頁

注意事項:

- 1. 本試題共 5 題,配分共 100 分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。

electron mass $m_e = 9.11 \times 10^{-31} kg$

electron charge $e = -1.6 \times 10^{-19} C$

Boltzmann constant $k_B = 1.38 \times 10^{-23} \text{ J/K}$ Planck constant $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$, $\hbar = \frac{h}{2\pi}$ light speed $c = 3.0 \times 10^8 \, \text{m/s}$

- 1. The light of total intensity $4.0 \mu W/cm^2$ falls on a clean iron sample of $2.0 cm^2$ in area. Assume that the iron sample reflects 90% of the light and only 5% of the absorbed energy lies in the region of spectrum above the threshold frequency.
 - (a) What intensity is actually available for the photoelectric effect? (8%)
 - (b) Assuming that the average wavelength of the photons in the violet region is 240nm, how many electrons will be emitted per second? (7%)
 - (c) Find the work function for iron with the threshold frequency 1.2×10^{15} Hz. (8%)
 - (d) The photoelectrons are produced by the violet light of wavelength 240 nm. Find the stopping voltage to stop all photoelectrons. (7%)
- 2. An electron with speed 0.85c, find
 - (a) its total energy in electron volts, (5%)
 - (b) its kinetic energy in electron volts, (5%)
 - (c) and its de Broglie wavelength.(5%)

- 3. According to the Stefan-Boltzmann law, the power R(T) (per unit area) emitted from the blackbody surface at temperature T can be written as $R(T) = \sigma T^4$ with $\sigma = 5.67 \times 10^{-8} W m^{-2} K^{-4}$ The radius of the sun is $7.0 \times 10^5 km$ and the mean Earth-sun distance is $1.5 \times 10^{11} m$. Assuming that the sun is a blackbody and the surface is at temperature 6000K, find the power per unit exposed area received by the earth. (10%)
- 4. For a hydrogen atom, the lowest stationary state has energy $E_1 = -13.6 eV$.
 - (a) Calculate the energy of the states corresponding to the principal quantum number n=3 for a hydrogen atom. (5%)
 - (b) Enumerate all states of the hydrogen atom of n=3 by spectroscopic designation (n, l, m_l) for each state, where n, l, and m_l are principal quantum number, orbital quantum number and magnetic quantum number respectively. (10%)
 - (c) Consider an electron in the sate of $(n, l, m_l)=(3, 2, m_l)$.

 $h = h/2\pi$ (h is Planck constant) (10%)

- (c1) Calculate the magnitude of the total angular momentum |L|, and express it in terms of \hbar , where $\hbar = h/2\pi$ (h is Planck constant) (5%) (c2) Calculate all the allowed values of L_z , and express them in terms of \hbar , where
- 5. Stern-Gerlach experiment but using hydrogen atoms. The atomic hydrogen beam was produced in a discharge tube having temperature of 600K. The highly collimated beam passed along the x direction through an inhomogeneous field of length 4 cm having average value of 1250 T/m along z direction. The magnetic moment of the hydrogen atom is 9.27×10^{-24} J/T. The Boltzmann constant $k_R = 1.38 \times 10^{-23}$ J/K and the mass of the
 - is 9.27×10^{-23} J/T. The Boltzmann constant $k_B = 1.38 \times 10^{-23}$ J/K and the mass of the hydrogen atom is 1.67×10^{-27} kg.
 - (a) What is the root-mean-square speed of the hydrogen atom in the discharge tube? (5%)
 - (b) The atomic beam is detected on a collector plate after passing along the inhomogeneous field. What is the separation of the atomic beam on the plate? (10%)