國立臺北科技大學 102 學年度碩士班招生考試

系所組別:4300 資訊與運籌管理研究所

第一節 計算機概論 試題

第一頁 共二頁

注意事項:

- 1. 本試題共九題,配分共100分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。

```
- What does the following program print? (10%)
            class SideEffect
               private int x = 1;
               public void xSet(int xx)
                   x = xx;
               public int xGet()
                   return x;
           class Ex1
               public static void main(String[] args)
                    int p = 1;
                    change(p);
                    System.out.println(p);
                    SideEffect r = new SideEffect();
                    change(r);
                    System.out.println(r.xGet());
               public static void change(int q)
```

```
q = 2;
                public static void change(SideEffect t)
                    t.xSet(5);
\Rightarrow What does the following program print? (10%)
            class Ex2
                public static void main (String[] args)
                    System.out.println("Start of main");
                       f();
                    catch (ArithmeticException e)
                       System.out.println("Exception");
                    System.out.println("End of main");
                public static void f()
                    System.out.println("Start of f");
                    System.out.println("End of f");
                public static void g()
                    System.out.println("Start of g");
                    int x;
                    x = 5/0;
                    System.out.println("End of g");
```

注意:背面尚有試題

第二頁 共二頁

```
= . What does the following program print? (10%)
           class Ex3
               public static void main(String[] args)
                   r2(5);
                   System.out.println();
               public static void r2(int x)
                   if(x == 0)
                       System.out.print("E");
                   else if (x = 1)
                       System.out.print("A");
                       r2(6);
                       System.out.print("B");
                   else
                       System.out.print("C");
                       r2(x - 2);
                       System.out.print("D");
```

Write a Dynamic Programming algorithm for determining a longest common subsequence between two strings. A subsequence of W is obtained by deleting 0 or more (not necessarily consecutive) symbols from W. A common subsequence between W and X is defined to be a subsequence of both strings. The longest common subsequence problem is to find a longest common subsequence between two strings. For instance, consider W = abaade and X = caacedc. The longest common subsequence between W and X is A are A are A and A is A are A and A is A are A are A and A is A are A and A are A and A is A are A and A are A are A are A and A is A are A and A are A are A and A are A and A is A are A and A are A are A are A and A are A and A are A and A are A are A are A and A are A and A are A are A are A are A and A are A are A and A are A are A and A are A are A are A and A are A are A and A are A are A are A are A are A are A and A are A are

- £ · Virtual memory is the separation of user logical memory from physical memory. Virtual memory is commonly implemented by demand paging. Describe how a demand-paging system works. (10%)
- \Rightarrow A B-tree of order m is an m-way search tree that is either empty or satisfies the following properties: (1) The root node has at least 2 children. (2) All nodes other than the root node and failure nodes have at least $\lceil m/2 \rceil$ children. (3) All failure nodes are at the same level. Show the results of inserting the keys

- + Show the red-black trees that result after successively inserting the keys 41, 38, 31, 12, 19, 8 into an initially empty red-black tree. (10%)
- Consider inserting the keys 54, 12, 16, 23, 6, 13, 82, 28, 31 into a hash table of length m = 11 using open addressing with the auxiliary hash function $h'(k) = k \mod m$. Show the result of inserting these keys using quadratic probing. Quadratic probing uses a hash function of the form $h(k,i) = (h'(k) + i + 3i^2) \mod m$, $i = 0,1,2,\cdots$ (10%)
- 九、Describe the use of the real-time transport protocol (RTP) and, by means of a diagram, show its position in relation to the TCP/IP protocol stack. (10%)