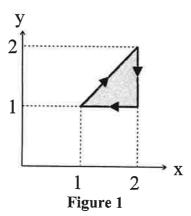
114 cc03

## 國立臺北科技大學 114 學年度碩士班招生考試

系所組別:2230 電子工程系碩士班丙組

## 第一節 電磁學 試題


第1頁 共1頁

## 注意事項:

- 1. 本試題共 4 題, 每題 25 分, 共 100 分。
- 2. 不必抄題,作答時請將試題題號及答案依照順序寫在答案卷上。
- 全部答案均須在答案卷之答案欄內作答,否則不予計分。

Note: all numbers must have at least 3 digits of accuracy. Grades will not be awarded without rigorous description or mathematical proof.

- 1. Assume the vector function  $\vec{A}(x,y,z) = 3x^2y^3\hat{x} x^3y^2\hat{y}$ , where  $\hat{x}$  and  $\hat{y}$  are the unit vectors in x and y directions, respectively.
  - (a) Find  $\oint \vec{A} \cdot d\vec{\ell}$  around the triangular contour shown in Figure 1. (10%)
  - (b) Evaluate  $\int (\nabla \times \vec{A}) \cdot d\vec{s}$  over the triangular area. (10%)
  - (c) Can  $\vec{A}$  be expressed as the gradient of a scalar? Explain. (5%)



- Assume a plane wave  $\vec{E}(x,y,z) = (3\hat{x} + E_y\hat{y})e^{j(4x+3y)}$  is propagating in a source-free free space  $(\varepsilon_0, \mu_0)$ .
  - (a) Let  $\hat{n}$  be a unit vector pointing to the propagation direction of the plane wave. Find  $\hat{n}$ . (5%)
  - **(b)** Find  $E_y$ . (5%)
  - (c) Find  $\vec{H}(x,y,z,t)$ . (10%)
  - (d) Find the frequency. (5%)

- As shown in the Figure 2, a spherical cavity of radius a is located inside a spherical conducting sphere of radius b. The distance between the centers of the two spheres is c. A static point charge Q is located inside the cavity at a distance d to the center of the cavity. Determine the following.
  - (a) The total charge  $Q_a$  on the inner surface of the conducting sphere. (5%)
  - (b) The total charge  $Q_b$  on the outer surface of the conducting sphere. (5%)
  - (c) Let the origin be at the center of the conducting sphere with a spherical coordinate system  $(R,\theta,\phi)$ . Let the voltage at infinity be zero. Find the voltage  $V_{\text{out}}(R,\theta,\phi)$  outside the outer surface of the conducting sphere. (5%)
  - (d) Let the origin be at the center of the cavity with a spherical coordinate system  $(R', \theta', \varphi')$ . Find the voltage  $V_{in}(R', \theta', \varphi')$  inside the cavity. (10%)

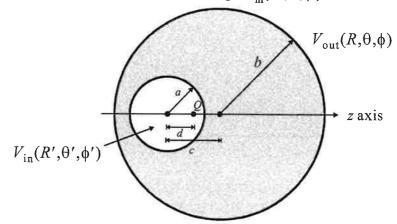



Figure 2

- 4. A transmission line has the following parameters:  $R=2\Omega/m$ , G=0.5 m U/m, f=1 GHz, L=8 nH/m, C=0.23 pF/m.
  - (a) Calculate the characteristic impedance. (5%)
  - **(b)** Calculate the complex propagation constant. (5%)
  - (c) If 1 Watt power enters into this transmission line, after one guided wavelength, how much power is dissipated in the transmission line? (5%)
  - (d) If the transmission line is terminated to a  $100\Omega$  load, what is the reflection coefficient at the load? (5%)
  - (e) What is the reflection coefficient at a distance of one wavelength away from the load? (5%)