IIICH02

國立臺北科技大學 111 學年度碩士班招生考試 系所組別:3520 化學工程與生物科技系化學工程碩士班乙組 第一節 物理化學 試題

第1頁 共1頁

注意事項:

- 1.本試題共5題,每題20分,共100分。
- 2.不必抄題,作答時請將試題題號及答案依照順序寫在答案卷上
- 3.全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. (a) What are the zeroth, first, second and third laws of thermodynamics? (10%)
 - (b) Explain at least four methods for determining the rate equation of a chemical reaction. (10%)
- 2. When 131 mg of naphthalene, $C_{10}H_8(s)$, was burned in a bomb calorimeter the temperature rose by 3.16 K. Calculate the calorimeter constant (= $|q|/\Delta T$). By how much will the temperature rise when 181 mg of phenol, $C_6H_5OH(s)$, is burned in the calorimeter under the same conditions? $(\Delta_c H^o(C_{10}H_8, s, 298 \text{ K}) = -5157 \text{ kJ mol}^{-1}, \Delta_c H^o(C_6H_5OH, l, 298 \text{ K}) = -3054 \text{ kJ mol}^{-1}, H = 1.0079 \text{ g mol}^{-1}, C = 12.011 \text{ g mol}^{-1}, O = 15.9994 \text{ g mol}^{-1}).$ (20%)
- 3. Calculate the change in the entropies of the system and the surroundings, and total change in entropy, when a sample of nitrogen gas of 2 moles at 300 K and 1.00 bar triples its volume in
 - (a) an isothermal reversible expansion. (6%)
 - (b) an isothermal irreversible expansion against $P_{\text{ex}} = 0$ bar. (6%)
 - (c) an adiabatic reversible expansion. $(C_p/C_v = 1.4)$. (8%)

4. Consider the cell:

$$Zn(s) | ZnCl_2(aq, 0.0050 \text{ mol kg}^{-1}) || Hg_2Cl_2(s) | Hg(l)$$

The cell potential is +1.2272 V, $E^{\circ}(Zn^{2+}, Zn) = -0.7628$ V, and $E^{\circ}(Hg_2Cl_2, Hg) = +0.2676$ V. Determine

- (a) the Nernst equation for the cell. (2%)
- (b) the standard cell potential. (2%)
- (c) $\Delta_r G$, $\Delta_r G^{\circ}$, and K for the cell reaction. (6%)
- (d) the mean ionic activity and activity coefficient of ZnCl₂ from the measured cell potential. (4%)
- (e) the mean ionic activity coefficient of ZnCl₂ from the Debye-Hückel limiting law. (2%)
- (f) Given that $(\partial E_{\text{cell}}/\partial T)_p = -0.000452 \text{ V K}^{-1}$, calculate $\Delta_r H$ and $\Delta_r S$. (4%)
- 5. The dissociation vapor pressure of a salt at 370°C and 210 kPa but at 490°C it has risen to 560 kPa. For the dissociation reaction of A₂B(s):

$$A_2B(s) \longrightarrow A_2(g) + B(g)$$

Assume that the vapor behaves as a perfect gas and that ΔH° and ΔS° are independent of temperature in the range given. calculate all at 430°C

- (a) the equilibrium constant. (5%)
- (b) the standard reaction Gibbs energy. (5%)
- (c) the standard enthalpy. (5%)
- (d) the standard entropy of dissociation. (5%)