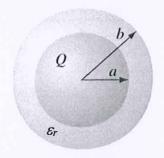
(06 DE 03

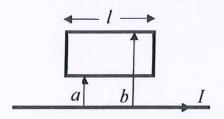
國立臺北科技大學 106 學年度碩士班招生考試


系所組別:2402光電工程系碩士班

第二節 電磁學 試題 (選考)

第一頁 共一頁

注意事項:


- 1. 本試題共 6 題,配分共 100 分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. A metal sphere of radius a carries a charge Q. It is surrounded, out to radius b, by linear dielectric material of relative permittivity ε_r , as shown in the figure.
 - (a) Find the potential V at the center, using infinity as your reference point. (10%)
 - (b) Determine the surface bound charge density at the inner surface of the dielectric shell. (10%)

2. As shown in the figure, \vec{p}_1 and \vec{p}_2 are dipoles a distance r apart. What is the torque on \vec{p}_2 due to \vec{p}_1 ? (15%)

$$\mathbf{p}_1$$
 θ

3. A flat loop and a long straight wire lie in the same plane as shown in the figure. The current in the wire varies according to $I = I_0 \sin(\omega t)$. Find the emf induced in the loop. (15%)

- 4. A right-hand circularly polarized plane wave in air represented by the phasor $\vec{E}(x) = E_0(\hat{y} j\hat{z})e^{-j\beta x}$ is incident on a perfectly conducting wall at x = 0.
 - (a) Determine the electric and magnetic field phasors. (10%)
 - (b) Find the induced current on the conducting wall. (10%)
 - (c) What is the time-average Poynting vector in air (the region x < 0)? (5%)
- 5. The electric field of an electromagnetic wave propagating through a medium with a permeability $\mu = \mu_0$ and a relative permittivity $\varepsilon_r = 9$ is given by

$$\vec{E} = 0.3\cos(2\times10^8 t + \beta x)\hat{y} \text{ (V/m), where } \beta > 0.$$

- (a) What is the speed of the wave? (5%)
- (b) Determine β . (5%)
- (c) What is the direction of propagation? (5%)
- 6. Show that u_E and u_B , the energy densities of the electric and magnetic fields, are equal to each other in an electromagnetic wave. (10%)

For Your Reference:

The potential at r; θ due to a dipole at the origin and pointing in the z direction is given by

$$V_{dip}(r,\theta) = \frac{\hat{r} \cdot \hat{p}}{4\pi\varepsilon_0 r^2}$$
. This may help you to find out the electric field at r, θ .

In spherical coordinates,

$$\nabla f = \frac{\partial f}{\partial r}\hat{r} + \frac{1}{r}\frac{\partial f}{\partial \theta}\hat{\theta} + \frac{1}{r\sin\theta}\frac{\partial f}{\partial \phi}\hat{\phi}$$

$$\nabla \cdot \vec{F} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 F_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta F_\theta) + \frac{1}{r \sin \theta} \frac{\partial F_\phi}{\partial \phi}$$