國立臺北科技大學 106 學年度碩士班招生考試

系所組別:2401 光電工程系碩士班

第二節 電子學 試題 (選考)

第一頁 共二頁

注意事項:

- 1. 本試題共六題,配分共100分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. Fig. 1 shows a circuit that provides an output voltage v_0 whose value can be varied by turning the wiper of the 100 k Ω potentiometer. (a) Find the range over which v_0 can be varied. (b) If the potentiometer is a "20-turn" device, find the change in v_0 corresponding to each turn of the pot. (5%, 5%)

Fig. 1

2. For the bridge rectifier circuit of Fig. 2, the input is a sinusoidal signal $v_s(t)$ with a peak voltage V_s and the diode has a constant voltage drop V_D . Please derive (a) the average (or dc component) of the output voltage $v_0(t)$ (b) the peak diode current and (c) the peak inverse voltage (PIV). (5%, 5%, 5%)

Fig. 2

3. A discrete MOSFET common-source amplifier, shown in Fig. 3, has $R_{\rm in}$ =2 M Ω , $g_{\rm m}$ =4 mA/V, $r_{\rm o}$ =100 k Ω , $R_{\rm D}$ =10 k Ω , C_{gs} =2 pF, and C_{gd} =0.5 pF. The amplifier is fed from a voltage source with an internal resistance $R_{\rm sig}$ =500 k Ω and is connected to a 10 k Ω load. Find (a) the overall midband gain $A_{\rm M}$ (b) the upper 3-dB frequency $f_{\rm H}$ (5%, 10%)

Fig. 3

注意:背面尚有試題

4. In the circuit shown in Fig. 4, the transistor has a β of 200. (a) What is the dc voltage at the collector? Find the input resistance (b) R_{ib} (c) R_{in} and (d) the overall voltage gain. (5%, 5%, 5%, 5%)

Fig. 4

5. For the Darlington voltage follower in Fig. 5, please derive (a) R_{in} (b) R_{out} and (c) v_o/v_{sig} (5%, 5%, 10%)

Fig. 5

6. For the circuit of Fig. 6, use the feedback method to find (a) the voltage gain v_o/v_s (b) the input resistance R_{in} and (c) the output resistance R_{out} . The op amp has open-loop gain $\mu = 10^4 \text{ V/V}$, $R_{id}=100 \text{ k}\Omega$, and $r_o=1 \text{ k}\Omega$. (10%, 5%, 5%)

Fig. 6