107EE07

國立臺北科技大學 107 學年度碩士班招生考試

系所組別:2143 雷機工程系碩士班丁組

第一節 機率 試題 (選考)

第一頁 共一頁

- 1. 本試題共五題,每題 20 分,共 100 分。 2. 請標明大題、子題編號作答,不必抄題。

- -. Consider the length of a video X in minutes distributed from a website has the following probability mass function (PMF):

$$P_X(x) = \begin{cases} 0.15 & x = 1, 2, 3, 4, \\ 0.1 & x = 5, 6, 7, 8, \\ 0 & otherwise \end{cases}$$

Given the event that $x \in L = \{5, 6, 7, 8\}$:

- 1. (5%) Find the conditional PMF $P_{X|L}(x)$.
- 2. (5%) Find the conditional expected value E[X | L].
- 3. (5%) Find the conditional variance Var[X | L].
- 4. (5%) Find the conditional standard deviation $\sigma_{X/L}$.
- \perp . Let σ_X^2 and σ_Y^2 denote the variances of random variable X and Y. Let W = X aY, where a is a constant.
 - 1. (10%) Find Var[W], and show that $Cov[X,Y] \le \frac{1}{2a} Var[X] + \frac{a}{2} Var[Y]$.
 - 2. (10%) Show that the correlation coefficient of the two random variable X and Y,

$$\rho_{X,Y} = \frac{\text{Cov}[X,Y]}{\sigma_X \sigma_Y}$$
, has the property that $-1 \le \rho_{X,Y} \le 1$.

 \equiv . Consider random variable X and Y have the joint probability density function (PDF)

$$f_{X,Y}(x,y) = \begin{cases} \lambda \mu e^{-(\lambda x + \mu y)}, & x \ge 0, \ y \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

where λ and μ are constants.

- 1. (10%) Let W = Y/X. Find the PDF of $f_w(w)$
- 2. (10%) Let Z = aX where a is a constant. Find the PDF of $f_{y}(x)$ and $f_{z}(z)$.
- \square . For a random variable X, the moment generating function (MGF) of X is defined as

$$\phi_X(s) = \mathbb{E}[e^{sX}].$$

- 1. (10%) Show that the n-th moment of the random variable X, $E[X^n] = \frac{d^n \phi_X(s)}{ds^n}$.
- 2. (10%) Suppose $\phi_{X}(s) = 10/(10-s)$. Find E[X].

 $\phi(z)$. In other words, $\lim_{n\to\infty} F_Z(z) = \phi(z)$.

 $\underline{\mathcal{L}}$. Given X_1, X_2, \dots, X_n a sequence of iid random variables with expected value μ_X and

variance
$$\sigma_X^2$$
. Let $Z_n = \frac{\sum_{i=1}^n (X_i - n\mu_X)}{\sqrt{n\sigma_X^2}}$.

- 1. (10%) Find $E[Z_n]$ and $Var[Z_n]$
- 2. (10%) Show that when n is approaching to ∞ , the cumulative distribution function (CDF) of random variable Z, $F_{z}(z)$, is approaching to the standard normal CDF,