國立臺北科技大學108學年度碩士班招生考試

系所組別:1302 車輛工程系碩士班

第二節 自動控制 試題 (選考)

第一頁 共二頁

注意事項:

- 1. 本試題共四大題, 每題 25 分, 共 100 分。
- 2. 不必抄題,作答時請將試題題號及答案依照順序寫在答案卷上。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. (25%) A system has three masses, and these three masses are fixed tightly together (Fig.1). The parameter values are: $m_1=m_2=m_3=\frac{1}{3}$, $k_1=k_2=9$, $c_1=c_2=3$.
- (1) Find the governing differential equation of x_1 . (7%)
- (2) Find the transfer function of the input f(t) and output x_1 of this system if initial conditions $x_1 = 0$, $\dot{x}_1 = 1$ are given. (6%)
- (3) Is this system stable or unstable? Why? (5%)
- (4) If f(t) is a unit step input, what is the oscillating frequency of the transient time response of this system? (7%)

- 2. (25%) The unit-step time response of a 2nd-order system is in Fig.2.
- (1) According to Fig.2, find the approximate values of rise time t_r , overshoot M_p , peak time t_p and settling time t_s . (12%)
- (2). If the equations of t_r , t_p , t_s , M_p are given, find the transfer function of this system. (13%) $(M_p = e^{-(\zeta \pi/\sqrt{1-\zeta^2})})$ $t_s = \frac{4}{\zeta \omega_n}$ $t_r = \frac{0.8+2.5\zeta}{\omega_n}$ $t_p = \frac{\pi}{\omega_d}$)

Fig.2

- 3. (25%) Fig. 3.1 is the block diagram of a system with three subsystems, a disturbance d, and a feedback H.
- (1) What is the open-loop transfer function of the system from input to output? (4%)
- (2) What is the closed-loop transfer function of the system from input to output? (5%)
- (3) What is the closed-loop transfer function of the system from disturbance to output? (6%)
- (4) If a proportional gain K is added to the block as Fig. 3.2. And the transfer functions are

$$G_1(s)=\frac{1}{s+1}$$
, $G_2(s)=\frac{1}{s^2+2s-1}$, $G_3(s)=0$, $H(s)=1$. What is range of the value of K to ensure system stability? (10%)

注意:背面尚有試題

第二頁 共二頁

- 4. (25%) The block diagram of a feedback system is as Fig.4.
- (1) The system is unstable if this system has at least one closed-loop pole at the right-half-plane of s-plane. Why? (6%)
- (2) Draw the approximate root locus for each of the following cases: (12%)

(a)
$$G(s) = \frac{s+2}{s^2+4s+3}$$
, (b) $G(s) = \frac{s+3}{s^2+3s+2}$,

(c)
$$G(s) = \frac{s+2}{s^2+2s+2}$$
, (d) $G(s) = \frac{1}{s^3+6s^2+11s+6}$

(3) For the cases in (2), which system(s) can have damping ratio < 0.707 for any value of K? (7%)

Fig.4