AT 03

國立臺北科技大學108學年度碩士班招生考試

系所組別:1502 自動化科技研究所

第二節 自動控制 試題 (選考)

第一頁 共一頁

注意事項:

- 1. 本試題共四題,共100分。
- 2. 不必抄題,作答時請將試題題號及答案依照順序寫在答案卷上
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分
- 1. (20%) For the control system as shown in Figure 1, sketch the root locus and determine the maximum value of K(K>0) such that the system closed-loop poles are all real.

Figure 1

- (1) (10%) Sketch the root locus.
- (2) (10%) Determine the maximum value of K(K>0) such that the system closed-loop poles are all real.
- 2. (20%) For the unity feedback system with open-loop transfer function

y = x

$$G(s) = \frac{50}{s(s+10)}$$

- (1) (10%) Find the step error constant K_p , ramp error constant K_v and parabolic error constant K_a .
- (2) (10%) The input $r(t) = 2 + 3t + 0.5t^2$, please find the error e(10) at t=10 sec and the steady-state error e_{ss} .
- 3. (30%) For the control system as shown in Figure 2, its plant model is expressed as $\dot{x} = -10x + 2u d$

$$\begin{array}{c|c}
 & d \ (disturbance) \\
\hline
 & r \\
\hline
 & s \\
\hline
 & r \\
\hline
 & r$$

Figure 2

- (1) (10%) Find the parameters K_p and K_l of the controller to let the closed loop poles be located at -10 and -8.
- (2) (10%) Find the following closed loop transfer functions:

(a)
$$\frac{y}{r}\Big|_{d=0,n=0}$$
; (b) $\frac{y}{d}\Big|_{r=0,n=0}$; (c) $\frac{y}{n}\Big|_{r=0,d=0}$

- (3) (10%) Find the steady-state value of y due to unit-step input r and unit-step disturbance change of d.
- 4. (30%) A mass-spring-damper system is shown in Figure 3(a), where m, c, k are the mass, spring constant and damping coefficient, respectively. A force f(t) = 2 Newton is applied to this system, the mass displacement of y(t) is plotted in Figure 1(b).

Figure 3

(1) (8%) Derive the dynamic equation of motion of the system and find the transfer function V(S)

$$G(s) = \frac{Y(S)}{F(s)}$$

- (2) (8%) Determine the natural frequency ω_n and damping ratio ς from this response curve in Figure 1(b).
- (3) (6%) Determine the parameters m, c, k.
- (4) (8%) If input force $f(t) = 2\sin(t)$, find the steady state response $y_{ss}(t)$.