110CH02

國立臺北科技大學 110 學年度碩士班招生考試 系所組別:3520 化學工程與生物科技系化學工程碩士班乙組 第一節 物理化學 試題

第1頁 共1頁

注意事項:

1.本試題共5題,每題20分,共100分。

2.不必抄題,作答時請將試題題號及答案依照順序寫在答案卷上。

全部答案均須在答案卷之答案欄內作答,否則不予計分。

- 1. An automobile tire was inflated to a gauge pressure of 200 kPa on a winter's day when the temperature was -6°C. What volume and gauge pressure will be found, assuming perfect gas behavior and no leaks have occurred, and that the temperature is 30°C?
 - (a) Assume the volume is constant. (10%)
 - (b) Assume the pressure is constant. (10%)
- 2. Two moles of an perfect gas ($C_{V,m} = 5/2$ R) at 25°C is allowed to expanded adiabatically and irreversibly from 2 dm³ to 10 dm³.
 - (a) Calculate the final temperature of the gas. (4%)
 - (b) Calculate ΔU , ΔH , ΔS , ΔG , ΔA , w, and q for this system. (14%)
 - (c) Calculate ΔS for the surroundings. (2%)
- 3. The volume of an aqueous solution of NaCl at 25°C was measured at a series of molalities *b*, and it was found that the volume fitted the expression:

$$V = 1003 + 16.62 x + 1.77 x^{3/2} + 0.12 x^2$$

where $V(\text{cm}^3)$ is the volume of a solution formed from 1.000 kg of water and $x = b / b^{\theta}$. Calculate the partial molar volume of the components in a solution of molality 0.100 mol kg⁻¹. (20%)

4. Use the Debye-Hückel limiting law and the Nernst equation to estimate the potential of the cell at 25°C:

Ag(s)|AgBr(s)|KBr(aq,0.05 mol kg⁻¹) || Cd(NO₃)₂(aq,0.015 mol kg⁻¹)| Cd(s)
Given that
$$E^{\theta}$$
(Cd²⁺, Cd) = -0.40 V, E^{θ} (AgBr, Ag) = +0.0713 V. (20%)

5. The reaction:

$$cis$$
-Cr(en)₂(OH)₂⁺ $\xrightarrow{k_1} trans$ -Cr(en)₂(OH)₂⁺

is first order in both directions. At 25°C the equilibrium constant is 0.16 and the rate constant k_I is 3.3×10^{-4} s⁻¹. In an experiment starting with the pure trans form, how long would it take for quarter the equilibrium amount of the cis isomer to be formed? (20%)