110ATOS

國立臺北科技大學 110 學年度碩士班招生考試

系所組別:1502 自動化科技研究所

第二節 自動控制 試題 (選考)

第1頁 共1頁

注意事項:

- 1. 本試題共4題,共100分。
- 2. 不必抄題,作答時請將試題題號及答案依照順序寫在答案卷上。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. A closed-loop system with unity feedback has a transfer function $T(s) = \frac{10(s+1)}{(s+1)^2+9}$
- (a) Draw the Bode diagram for the **open-loop** transfer function G(s) roughly, including magnitude and phase vs frequency with semilog scale for the frequency axis. (20%)
- (b) What is the gain margin? (10%)
- 2. Consider the transfer function $G(s) = \frac{(100 s)}{(s + 10)^2}$ with unity feedback. Please sketch the output response in time domain roughly. (10%)
- 3. Consider a closed-loop system shown in the figure

where
$$G(s) = \frac{10(s+1)}{s(s-3)}$$
.

- (a) What are the closed-loop poles and zeros? (2%)
- (b) Sketch the root locus. (15%)
- (c) Find the unit-step response Y(t). (5%)
- (d) Calculate Y(t) at 0, 1, ∞ . (3%)
- **4.** The equation of motion for the simple pendulum is $\ddot{\theta} + \omega^2 \theta = u$.
- (a) Please write the equation of motion in state space form. (5%)
- (b) Design an observer (estimator) that reconstructs both states of pendulum given measurements $\dot{\theta}$. Assume $\omega = 5 \, rad / s$ and pick the observer roots to be at $s = -10 \pm 10 \, j$. (10%)
- (c) Write the transfer function of the observer between the measured value of $\dot{\theta}$ and the estimated value of θ (or $\hat{\theta}$). (10%)
- (d) Design the state feedback controller K so that the roots lie in $s = -4 \pm 4j$. (10%)